The growth inhibition of hepatocellular and cholangiocellular carcinoma cells by gemcitabine and the roles of extracellular signal-regulated and checkpoint kinases.

نویسندگان

  • Kazuya Matsumoto
  • Takakazu Nagahara
  • Jun-Ichi Okano
  • Yoshikazu Murawaki
چکیده

We examined the effects of gemcitabine, a pyrimidine analogue, on hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC) cells. After HCC cells (HepG2, Hep3B, HLF and PLC/PRF/5) and CCC cells (HuCCT-1) were treated with gemcitabine, cellular growth, cell cycle, nuclear morphology and activity of signaling molecules were evaluated by WST-8 assays, flow cytometry analysis, Hoechst 33258 staining and Western blotting, respectively. We found that gemcitabine significantly inhibited the growth of HCC and CCC cells in a dose- and time-dependent manner. Gemcitabine induced cell cycle arrest at the G1 phase, however, the sub-G1 fraction was not observed and nuclear morphology did not indicate the induction of apoptosis. Gemcitabine induced differential activation of checkpoint kinases, Chk2 and Chk1, in HCC and CCC cells, respectively and gemcitabine activated extracellular signal-regulated kinase (ERK)1/2 in both cell types. After the cells were pretreated with a MEK inhibitor U0126, activations of these checkpoint kinases were abrogated and the cell death was enhanced. These results demonstrate that gemcitabine inhibited the growth of HCC and CCC cells by cell cycle arrest without apoptosis and that the ERK/Chk1/2 signaling pathway was in part responsible for the resistance to gemcitabine. Our findings shed light on treating patients with HCC and CCC by gemcitabine, especially when combined with a MEK inhibitor and Chk1/2 inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line

Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...

متن کامل

Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel

Objective(s) Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk...

متن کامل

O-11: Diverse Effects of Polyunsaturated Fatty Acids on Oocyte Maturation and Development In vitro

Background: Polyunsaturated fatty acids (PUFAs) have been shown to influence fertility and endocrinology of reproduction and metabolic activity in many species. In dairy cows, we and others have shown changes in steroid and metabolic hormones and prostaglandins leading to alteration of ovarian activity and uterine function. These can influence fertility by changes in folliculogenesis cyclicity ...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Oncology reports

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2008